Abstract

BackgroundProstaglandin F2alpha (PGF) induces luteolysis in cow by inducing a rapid reduction in progesterone production (functional luteolysis) followed by tissue degeneration (structural luteolysis). However the mechanisms of action of PGF remain unclear. Reactive oxygen species (ROS) play important roles in regulating the luteolytic action of PGF. The local concentration of ROS is controlled by superoxide dismutase (SOD), the main enzyme involved in the control of intraluteal ROS. Thus SOD seems to be involved in luteolysis process induced by PGF in cow.MethodsTo determine the dynamic relationship between PGF and ROS in bovine corpus luteum (CL) during luteolysis, we determined the time-dependent change of Copper/Zinc SOD (SOD1) in CL tissues after PGF treatment in vivo. We also investigated whether PGF and hydrogen peroxide (H2O2) modulates SOD1 expression and SOD activity in cultured bovine luteal endothelial cells (LECs) in vitro.ResultsFollowing administration of a luteolytic dose of PGF analogue (0 h) to cows at the mid-luteal stage, the expression of SOD1 mRNA and protein, and total SOD activity in CL tissues increased between 0.5 and 2 h, but fell below the initial (0 h) level at 24 h post-treatment. In cultured LECs, the expression of SOD1 mRNA was stimulated by PGF (1–10 microM) and H2O2 (10–100 microM) at 2 h (P<0.05). PGF and H2O2 increased SOD1 protein expression and total SOD activity at 2 h (P<0.05), whereas PGF and H2O2 inhibited SOD1 protein expressions and total SOD activity at 24 h (P<0.05). In addition, H2O2 stimulated PGF biosynthesis at 2 and 24 h in bovine LECs. Overall results indicate that, SOD is regulated by PGF and ROS in bovine LECs. SOD may play a role in controlling intraluteal PGF and ROS action during functional and structural luteolysis in cows.

Highlights

  • Prostaglandin F2alpha (PGF) induces luteolysis in cow by inducing a rapid reduction in progesterone production followed by tissue degeneration

  • SOD1 mRNA, protein expression and total superoxide dismutase (SOD) activity during PGF-induced luteolysis in vivo Injection of a luteolytic dose of PGF increased the expression of SOD1 mRNA (Figure 1A), SOD1 protein (Figure 1B) and total SOD activity (Figure 1C) from 0.5 to 2 h in bovine corpus luteum (CL) tissues, but decreased at 24 h (P

  • Dose-dependent effect of PGF and H2O2 on SOD1 mRNA expression at 2 h in vitro Both PGF (1-10 μM; Figure 2B) and H2O2 (10–100 μM; Figure 2C) induced mRNA expression of SOD1 in cultured bovine luteal endothelial cells (LECs) incubated for 2 h (P

Read more

Summary

Introduction

Prostaglandin F2alpha (PGF) induces luteolysis in cow by inducing a rapid reduction in progesterone production (functional luteolysis) followed by tissue degeneration (structural luteolysis). Reactive oxygen species (ROS) play important roles in regulating the luteolytic action of PGF. SOD seems to be involved in luteolysis process induced by PGF in cow. In vivo studies in cows demonstrated that intramuscular injections of PGF analogues given in the mid-luteal stage induce an acute decrease in progesterone (P4) production (functional luteolysis) followed by tissue degradation and a decrease in size of the CL Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anion (O2-) and hydroxyl radical (OH-) have been implicated in the luteolytic process [7]. PGF induces a decrease in serum concentrations of P4 in association with increasing generation of superoxide anion and H2O2 in the luteal tissue [8]. The luteal microenvironment seems to be exposed to high O2 condition, especially during the short period of time (1–2 h) following PGF treatment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call