Abstract
Many organisms both undergo dramatic morphological changes during post-embryonic development and also regenerate lost structures, but the roles of epigenetic regulators in such processes are only beginning to be understood. In the present study, the functions of two histone modifiers were examined during metamorphosis and larval limb regeneration in the red flour beetle Tribolium castaneum. Polycomb (Pc), a member of Polycomb repressive complex 1 (PRC1), and Enhancer of zeste (E(z)), a member of Polycomb repressive complex 2 (PRC2), were silenced in larvae using RNA interference. In the absence of Pc, the head appendages of adults transformed into a leg-like morphology, and the legs and wings assumed a metathoracic identity, indicating that Pc acts to specify proper segmental identity. Similarly, silencing of E(z) led to homeotic transformation of legs and wings. Additional defects were also observed in limb patterning as well as eye morphogenesis, indicating that PcG proteins play critical roles in imaginal precursor cells. In addition, larval legs and antennae failed to re-differentiate when either Pc or E(z) was knocked down, indicating that histone modification is necessary for proper blastema growth and differentiation. These findings indicate that PcG proteins play extensive roles in postembryonic plasticity of imaginal precursor cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.