Abstract
To explore the role of non-native interactions in the helix-coil transition, a detailed comparison between a Gō-like model and a non-Gō model has been performed via lattice Monte Carlo simulations. Only native hydrogen bonding interactions occur in the Gō-like model, and the non-native ones with sequence interval more than 4 is also included into the non-Gō model. Some significant differences between the results from those two models have been found. The non-native hydrogen bonds were found most populated at temperature around the helix-coil transition. The rearrangement of non-native hydrogen bonds into native ones in the formation of alpha-helix leads to the increase of susceptibility of chain conformation, and even two peaks of susceptibility of radius of gyration versus temperature exist in the case of non-Gō model for a non-short peptide, while just a single peak exists in the case of Gō model for a single polypeptide chain with various chain lengths. The non-native hydrogen bonds have complicated the temperature-dependence of Zimm-Bragg nucleation constant. The increase of relative probability of non-native hydrogen bonding for long polypeptide chains leads to non-monotonous chain length effect on the transition temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have