Abstract
It is important to establish relations between the network reconstruction and the topological dynamical structure of networks. In this article, we quantify the effect for two types of network topologies on the performance of network reconstruction. First, we generate two network modes with variable clustering coefficient based on Holme-Kim model and Newman-Watts small-world model, then we reconstruct the artificial networks by using a novel framework calledL1-norm minimization algorithm based on a theory called compressive sensing (CS), a framework for recovering sparse signals. The results of the simulation experiment show that the accuracy rate for the network reconstruction is a monotonically increasing function of the clustering coefficient in Holme-Kim model, whereas the opposite occurs in Newman-Watts small-world network. And this yet demonstrates that the larger the network size, the higher the accuracy rate. Morever, we compare the results of CS with orthogonal matching pursuit (OMP), a greedy algorithm. The results show that the accuracy rate ofL1-norm minimization method is 10% higher than that of OMP, and OMP yields 1.2 times the computation speed ofL1-norm minimization. Our work demonstrates that the topological structure of network has influence on the accurate reconstruction and it is helpful for offering proper method for the network reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.