Abstract

Biochar-based subsurface-flow constructed wetlands (CWs) with intermittent aeration (IA) or tidal flow (TF) oxygen supply strategies were established to treat domestic wastewater. The results showed that biochar achieved higher nutrient removal and lower greenhouse gas (GHG) emissions than ceramsite while supporting more diverse bacterial communities and higher abundances of functional taxa. Both IA and TF effectively enhanced nutrient removal, though the latter was more efficient and practical, and aeration conditions greatly influenced nutrient removal efficiency. GHG emissions were decreased by IA but were slightly increased by TF. Both oxygen supply methods significantly shaped the biofilm microbial communities and influenced biodiversity and richness, with observably higher proportions of potential nitrifiers and denitrifiers present in aerated CWs. Overall, biochar-based CWs operated with oxygen supply strategies provide superior treatment of decentralized wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.