Abstract

Abscisic acid (ABA) induces production of reactive oxygen species (ROS) and nitric oxide (NO), elevation of the cytosolic free calcium ion concentration ([Ca(2+)](cyt)) and cytosolic pH (pH(cyt)), and activation of S-type anion channels in guard cells, causing stomatal closure. To investigate whether Arabidopsis Two pore channel 1 (AtTPC1) that encodes the slow vacuolar (SV) channel is involved in stomatal closure, we examined stomatal movements and mobilization of second messengers in the attpc1-2 loss-of-function mutant in response to ABA, methyl jasmonate (MeJA) and Ca(2+). Both ABA and MeJA elicited production of ROS and NO, [Ca(2+)](cyt) oscillations, cytosolic alkalization and activation of S-type anion channel currents to lead to stomatal closure in the attpc1-2 mutant as well as the wild type. Unlike the wild type, in the attpc1-2 mutant exogenous Ca(2+) neither induced stomatal closure nor activated plasma membrane S-type anion channel currents despite [Ca(2+)](cyt) elevation. These results indicate that AtTPC1 functions in response to external Ca(2+) but not to ABA and MeJA in Arabidopsis guard cells and suggest that AtTPC1 could be involved in priming of plasma membrane S-type anion channels by external Ca(2+) in Arabidopsis guard cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call