Abstract

ABSTRACT Clinical Relevance Identification of the baseline chracteristics for children undergoing orthokeratology with relatively fast myopia progression can allow a more accurate determination of the risk/benefit ratio. Background This study aimed to investigate if baseline corneal biomechanics can classify relatively slow and fast myopia progression in children. Methods Children aged six to 12 years with low myopia (0.50 to 4.00 D) and astigmatism (less than or equal to 1.25 D), were recruited. Participants were randomised to be fitted with orthokeratology contact lenses with a conventional compression factor (0.75 D, n = 29) or an increased compression factor (1.75 D, n = 33). Relatively fast progressors were defined as participants who had axial elongation of 0.34 mm or above per 2 years. A binomial logistic regression analysis and a classification and regression tree model were used in the data analysis. The corneal biomechanics were measured with a bidirectional applanation device. The axial length was measured by a masked examiner. Results As there were no significant between-group differences in the baseline data (all p > 0.05), data were combined for analysis. The mean ± SD axial elongation for relatively slow (n = 27) and fast (n = 35) progressors were 0.18 ± 0.14 mm and 0.64 ± 0.23 mm per 2 years, respectively. The area under the curve (p2area1) was significantly higher in relatively fast progressors (p = 0.018). The binomial logistic regression and classification and regression tree model analysis showed that baseline age and p2area1 could differentiate between slow and fast progressors over 2 years. Conclusions Corneal biomechanics could be a potential predictor of axial elongation in orthokeratology contact lens-wearing children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.