Abstract

To assess whether increases in circulating atrial natriuretic hormone (ANH) in response to the plasma volume expansion, besides the volume receptor-mediated mechanisms, attenuate the arginine vasopressin (AVP) response to increased plasma osmolality and whether changes in plasma AVP and ANH affect renal solute excretion under hypertonic plasma volume expansion, hypertonic saline (0.95 mol/l saline) alone, hypertonic saline with 6% dextran (6D-HS) and hypertonic saline with 9% dextran (9D-HS) were administered into anesthetized dogs. In the control study, 0.15 mol/l NaCl alone was administered. Plasma AVP and ANH and cardiovascular and renal functions were determined. Hypertonic saline and 9D-HS also were administered into the vagotomized and sham operated dogs, and the same parameters were determined. Mean blood pressure and heart rate never changed in all the groups, but central venous pressure and plasma volume increased markedly in 6D-HS and 9D-HS groups. In the control and hypertonic saline groups, central venous pressure increased slightly but plasma volume never changed. Plasma AVP increased in the order of hypertonic saline, 6D-HS and 9D-HS, but plasma ANH increased in reverse order. Vagotomy restored the AVP response to 9D-HS to 75% of its response to hypertonic saline, with a marked rise in plasma ANH. Urine sodium and potassium excretion and urine flow increased in hypertonic saline, 6D-HS and 9D-HS groups, but these increases were comparable among the groups. In the control group, these parameters never changed. These results suggest that the volume receptor-mediated vagal neural and ANH responses to the plasma volume expansion may have an effect on the suppression of the AVP response to osmotic stimuli, and increased plasma ANH release never potentiated the natriuresis under the hypertonic plasma volume expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call