Abstract

The North American amphibian, wood frogs, Rana sylvatica are the most studied anuran to comprehend vertebrate freeze tolerance. Multiple adaptations support their survival in frigid temperatures during winters, particularly their ability to produce glucose as natural cryoprotectant. Freezing and its component consequences (anoxia and dehydration) induce multiple stresses on cells. Among these is endoplasmic reticulum (ER) stress, a condition spawned by buildup of unfolded or misfolded proteins in the ER. The ER stress causes the unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway that potentially could lead to apoptosis. Immunoblotting was used to assess the responses of major proteins of the UPR and ERAD under freezing, anoxia, and dehydration stresses in the liver and skeletal muscle of the wood frogs. Targets analyzed included activating transcription factors (ATF3, ATF4, ATF6), the growth arrest and DNA damage proteins (GADD34, GADD153), and EDEM (ERAD enhancing α-mannosidase-like proteins) and XBP1 (X-box binding protein 1) proteins. UPR signaling was triggered under all three stresses (freezing, anoxia, dehydration) in liver and skeletal muscle of wood frogs with most tissue/stress responses consistent with an upregulation of the primary targets of all three UPR pathways (ATF4, ATF6, and XBP-1) to enhance the protein folding/refolding capacity under these stress conditions. Only frozen muscle showed preference for proteasomal degradation of misfolded proteins via upregulation of EDEM (ERAD). The ERAD response of liver was downregulated across three stresses suggesting preference for more refolding of misfolded/unfolded proteins. Overall, we conclude that wood frog organs activate the UPR as a means of stabilizing and repairing cellular proteins to best survive freezing exposures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call