Abstract

This study aimed to investigate the changes in oxidative stress, adenosine monophosphate-activated protein kinase (AMPK), connexin43 (Cx43), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) expression, and extracellular matrix (ECM) in the gastric smooth muscle tissues of rats with diabetic gastroparesis (DGP) and high glucose-cultured gastric smooth muscle cells, determine the existence of oxidative stress-AMPK-Cx43-NLRP3 pathway under high glucose condition, and the involvement of this pathway in ECM remodeling in DGP rats. The results showed that with increasing duration of diabetes, oxidation stress levels gradually increased, the AMPK activity decreased first and then increased, NLRP3, CX43 expression, and membrane/cytoplasmratio of Cx43 expression were increased in the gastric smooth muscle tissues of diabetic rats. Changes in ECM of gastric smooth muscle cells wereobserved in DGP rats. The DGP group showed higher collagen type I content, increased expression of Caspase-1, transforming growth factor-beta 3 (TGF-β3), and matrix metalloproteinase-2 (MMP-2), decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) expression, and higher interleukin-1betacontent when compared with the control group. For gastric smooth muscle cells cultured under higher glucose, the MMP-2 and TGF-β3 expression wasdecreased, TGF-β1 and TIMP-1 expression was increased, the interleukin-1betacontent was decreased in cells after inhibition of NLRP3 expression; the NLRP3 and Caspase-1expression was decreased, and adenosine triphosphate content was lower after inhibition of Cx43; the expression of NLRP3, Caspase-1, P2X7, and the membrane/cytoplasm ratio of CX43 expression was decreased in cells after inhibition of AMPK and oxidative stress, the phospho-AMPK expression was also decreased after suppressing oxidative stress. Our findings suggest that high glucose induced the activation of the AMPK-Cx43-NLRP3 pathway through oxidative stress, and this pathway was involved in the ECM remodeling of gastric smooth muscles in DGP rats by regulating the biological functions of TGF-β3, TGF-β1, MMP-2, and TIMP-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call