Abstract

Aminosilanes are attractive precursors for atomic layer deposition of silicon oxides and nitrides because they are halide-free and more reactive than chlorosilanes. However, the deposition of silicon nitride on oxide substrates still requires relatively high temperatures. We show here that for a process involving disec-butylaminosilane and hydrazine, the insertion of Al from trimethyl aluminum allows the deposition of silicon nitride films at relatively low temperatures (250 °C). First-principles calculations reveal that the presence of Al increases the binding of molecular hydrazine, thereby effectively enhancing the reactivity of hydrazine with the silicon precursor during the atomic layer deposition process, which leads to nitrogen incorporation into silicon. However, the range of this enhancement is limited to ∼1 nm, requiring additional trimethylaluminum exposures to continue the Si3N4 deposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.