Abstract

The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model. Human fetal liver cells were investigated in vitro. C/EBPα gene expression was knocked down using siRNA or overexpressed by plasmid transfection. Cell type-specific gene expression was studied, cell populations and their proliferation were investigated, and metabolic parameters were analyzed. When C/EBPα gene expression was knocked down, we observed a significantly reduced expression of typical endothelial, hematopoietic and mesenchymal genes such as CD31, vWF, CD90, CD45 and α-smooth muscle actin in fetal cells. The intracellular expression of hepatic proteins and genes for liver-specific serum proteins α-fetoprotein and albumin were reduced, their protein secretion was increased. Fetal endothelial cell numbers were reduced and hepatoblast numbers were increased. C/EBPα overexpression in fetal cells resulted in increased endothelial numbers, but did not affect mesenchymal cell types or hepatoblasts. We demonstrated that the effects of C/EBPα are specific for the different human fetal liver cell types, using an advanced 3-D perfusion bioreactor as a human in vivo-like model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call