Abstract

BackgroundMature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown.MethodIn this study, human HpSCs were isolated from human primary fetal liver cells (FLCs) by flow cytometry using CDCP1, CD90, and CD66 antibodies. The isolated CDCP1+CD90+CD66– HpSCs were cultured on dishes coated with type IV collagen in DMEM nutrient mixture F-12 Ham supplemented with FBS, human γ-insulin, nicotinamide, dexamethasone, and l-glutamine for at least 2 weeks, and were characterized by transcriptomic profiling, quantitative real-time PCR, immunocytochemistry, and in-vivo transplantation.ResultsThe purified CDCP1+CD90+CD66– subpopulation exhibited clonal expansion and self-renewal capability, and bipotential capacity was further identified in single cell-derived colonies containing distinct hepatocytes and cholangiocytes. Moreover, in-vivo liver repopulation assays demonstrated that human CDCP1+CD90+CD66– HpSCs repopulated over 90% of the mouse liver and differentiated into functional hepatocytes with drug metabolism activity.ConclusionsWe identified a human hepatic stem/progenitor population in the CDCP1+CD90+CD66– subpopulation in human FLCs, indicating CDCP1 marker could potentially be utilized to identify and isolate HpSCs for further cytotherapy of liver disease.

Highlights

  • Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro

  • CUB domain-containing protein 1 (CDCP1) is a candidate marker for isolating clonal Hepatic stem cell (HpSC) from human primary Primary fetal liver cell (FLC) First, we confirmed whether human primary FLCs exhibited HpSC features

  • ALB and cytokeratin 19 (CK19) or AFP and CK19 were found in human primary FLCs, demonstrating the potential to give rise to hepatocytes and cholangiocytes

Read more

Summary

Introduction

Mature human hepatocytes are critical in preclinical research and therapy for liver disease, but are difficult to manipulate and expand in vitro. Hepatic stem cells (HpSCs) may be an alternative source of functional hepatocytes for cell therapy and disease modeling. Since these cells play an import role in regenerative medicine, the precise characterization that determines specific markers used to isolate these cells as well as whether they contribute to liver regeneration still remain to be shown. Human hepatic stem cells (HpSCs) from the liver lineage have become an attractive alternative cell source to primary hepatocytes. HpSCs that express a broad spectrum of markers have been identified previously; the specific marker expression profile that can be used to identify and isolate HpSCs from human primary fetal liver cells (FLCs) is still unclear

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.