Abstract
Single-molecule tracking data near solid surfaces contain information on diffusion that is potentially affected by adsorption. However, molecular adsorption can occur in an intermittent manner, and the overall phenomenon is regarded as slower yet normal diffusion if the time scale of each adsorption event is sufficiently shorter than the interval of data acquisition. We compare simple numerical model systems that vary in the time scale of adsorption event while sharing the same diffusion coefficient, and show that the shape of the displacement distribution depends on the time resolution. We also evaluate the characteristics by statistical quantities related to the large deviation principle. We show that the characteristic time scale of the intermittent phenomena is elucidated when the time resolution of the observation is sufficiently fine and the amount of data is sufficiently large to evaluate the intermittency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.