Abstract

The zeta (zeta) chain plays a central role in T cell antigen receptor assembly and signal transduction. From previous work in murine T cell hybridomas we have inferred that the zeta subunit is limiting in receptor assembly. Partial receptors made in excess of zeta are assembled in the endoplasmic reticulum, transported through the Golgi, but then rapidly and efficiently degraded in lysosomes. zeta would therefore seem to play a unique role in targeting receptors from the Golgi to the cell surface. To determine directly whether zeta limits receptor assembly we have reconstituted a zeta-deficient T cell line by transfection of the murine zeta cDNA. Transfection results in restoration of expression of surface T cell receptor. In addition, increasing zeta expression results in a commensurate increase in the survival of previously excess subunits. This is reflected in an increased surface expression of complete receptors. Finally, transfection of the zeta cDNA fails to produce detectable zeta-eta heterodimers. The implications of these findings with regard to receptor assembly, and the relationship between zeta and eta, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.