Abstract

BackgroundCtBP1 and CtBP2 are transcriptional co-repressors that modulate the activity of a large number of transcriptional repressors via the recruitment of chromatin modifiers. Many CtBP-regulated proteins are involved in pathways associated with tumorigenesis, including TGF-β and Wnt signalling pathways and cell cycle regulators such as RB/p130 and HDM2, as well as adenovirus E1A. CtBP1 and CtBP2 are highly similar proteins, although evidence is emerging that their activity can be differentially regulated, particularly through the control of their subcellular localisation. CtBP2s from diverse species contain a unique N-terminus, absent in CtBP1 that plays a key role in controlling the nuclear-cytoplasmic distribution of the protein.ResultsHere we show that amino acids (a.a.) 4–14 of CtBP2 direct CtBP2 into an almost exclusively nuclear distribution in cell lines of diverse origins. Whilst this sequence contains similarity to known nuclear localisation motifs, it cannot drive nuclear localisation of a heterologous protein, but rather has been shown to function as a p300 acetyltransferase-dependent nuclear retention sequence. Here we define the region of CtBP2 required to co-operate with a.a. 4–14 to promote CtBP2 nuclear accumulation as being within a.a. 1–119. In addition, we show that a.a. 120–445 of CtBP2 can also promote CtBP2 nuclear accumulation, independently of a.a. 4–14. Finally, CtBP1 and CtBP2 can form heterodimers, and we show that the interaction with CtBP2 is one mechanism whereby CtBP1 can be recruited to the nucleus.ConclusionTogether, these findings represent key distinctions in the regulation of the functions of CtBP family members that may have important implications as to their roles in development, and cell differentiation and survival.

Highlights

  • CtBP1 and CtBP2 are transcriptional co-repressors that modulate the activity of a large number of transcriptional repressors via the recruitment of chromatin modifiers

  • CtBP proteins have been implicated in tumorigenesis, as their interaction with the C-terminus of E1A is essential for immortalisation of primary rodent cells, and negatively regulates E1A-mediated transformation, tumorigenicity and metastasis [1,9,10]

  • Many transcriptional repressors regulated by CtBPs are involved in pathways associated with tumorigenesis, including TGF-β and Wnt signalling pathways and cell cycle regulators such as RB/p130 and HDM2 [11,12,13,14,15]

Read more

Summary

Introduction

CtBP1 and CtBP2 are transcriptional co-repressors that modulate the activity of a large number of transcriptional repressors via the recruitment of chromatin modifiers. Many CtBPregulated proteins are involved in pathways associated with tumorigenesis, including TGF-β and Wnt signalling pathways and cell cycle regulators such as RB/p130 and HDM2, as well as adenovirus E1A. CtBP proteins were originally identified as C-terminal binding proteins of type 2/5 adenovirus E1A proteins [1] They function primarily in the nucleus as transcriptional co-repressors, modulating the activity of a large number of transcriptional repressors via recruitment of chromatin modifiers such as histone deacetylases, histone methyltransferases and polycomb proteins [2,3,4], and sequestration of histone acetyltransferases [5]. Many transcriptional repressors regulated by CtBPs are involved in pathways associated with tumorigenesis, including TGF-β and Wnt signalling pathways and cell cycle regulators such as RB/p130 and HDM2 [11,12,13,14,15]. As a consequence of disruption of some of these critical functions, inhibition of CtBP expression in cancer cells can result in apoptosis [16]; reviewed in [17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call