Abstract
The sols produced by admixture of ZrOCl2 acidified solutions to hot H2SO4 aqueous solutions were studied to clarify the effects of Cl- and SO42- ions on the kinetic stability of nanoparticles and to obtain some new evidence concerning the mechanism of a thermoreversible sol−gel transition observed in this system. The study of suspensions prepared with different molar ratios RS = [Zr]/[SO42-] and RCl = [Zr]/[Cl-] revealed domains of composition of formation of thermoreversible gels, thermostable sols, and powder precipitation. The effects of RS and RCl on the structural features of nanoparticles and on the particle−solution interface were systematically analyzed for samples of thermoreversible and thermostable sol domains. Small-angle X-ray scattering measurements revealed the presence of small fractal aggregates in all samples of thermoreversible domains, while compact packing aggregates of primary particles are present in the thermostable sol. Extended X-ray absorption fine structure and elemental chemic...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have