Abstract

Motifs N2 and N3, also referred to as switch-1 and switch-2, form part of the active site of molecular motors such as myosins and kinesins. In the case of myosin, N3 is thought to act as a γ-phosphate sensor and moves almost 6 Å relative to N2 during the catalysed turnover of ATP, opening and closing the active site surrounding the γ-phosphate. The closed form seems to be necessary for hydrolysis and is stabilised by the formation of a salt-bridge between an arginine residue in N2 and a glutamate residue in N3. We examined the role of this salt-bridge in Dictyostelium discoideum myosin. Myosin motor domains with mutations E459R or R238E, that block salt-bridge formation, show defects in nucleotide-binding, reduced rates of ATP hydrolysis and a tenfold reduction in actin affinity. Inversion of the salt-bridge in double-mutant M765-IS eliminates most of the defects observed for the single mutants. With the exception of a 2,500-fold higher KM value for ATP, the double-mutant displayed enzymatic and functional properties very similar to those of the wild-type protein. Our results reveal that, independent of its orientation, the salt-bridge is required to support efficient ATP hydrolysis, normal communication between different functional regions of the myosin head, and motor function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.