Abstract

The role of paraspinal muscle degeneration in the cascade of sagittal imbalance is still unclear. This study aimed to compare paraspinal muscle degeneration in the 4 stages of sagittal imbalance: sagittal balance (SB), compensated sagittal balance (CSB), decompensated sagittal imbalance (DSI), and sagittal imbalance with failure of pelvic compensation (SI-FPC). In addition, it aimed to compare the effects paraspinal muscle endurance and morphology on sagittal spinopelvic alignment in patients with lumbar spinal stenosis. A cross-sectional study of 219 patients hospitalized with lumbar spinal stenosis was performed. The isometric paraspinal extensor endurance test and evaluation of atrophy and fat infiltration of the paraspinal extensor muscles and psoas major on magnetic resonance imaging were performed at baseline. Spinopelvic parameters including lumbar lordosis, pelvic tilt, sacral slope, pelvic incidence, and the sagittal vertical axis were measured. The patients with lumbar spinal stenosis were divided into 67 with SB, 85 with CSB, 49 with DSI, and 17 with SI-FPC. There were significant differences in paraspinal muscle endurance and morphology among the 4 groups. Furthermore, the SI-FPC group had poorer paraspinal muscle endurance than either the SB or the CSB group. In multiple linear regression analysis, paraspinal muscle endurance and the relative functional cross-sectional area of the paraspinal extensor muscles were the independent predictors of the sagittal vertical axis, and the relative functional cross-sectional area of the psoas major was the independent predictor of relative pelvic version. This study indicated that paraspinal muscle degeneration is not only an initiating factor in pelvic retroversion but also a risk factor for progression from a compensated to a decompensated stage. Specifically, the impairment of muscle endurance in the CSB stage may be the reason why patients experience failure of pelvic compensation. In addition, paraspinal muscle endurance and muscle morphology (relative functional cross-sectional area of the paraspinal extensor muscles and psoas major) had different clinical consequences. Prognostic Level II . See Instructions for Authors for a complete description of levels of evidence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call