Abstract

SummaryDuplication and haploinsufficiency of the USP7 gene are implicated in autism spectrum disorders (ASD), but the role for USP7 in neurodevelopment and contribution to ASD pathogenesis remain unknown. We find that in primary neurons, overexpression of USP7 increases dendritic branch number and total dendritic length, whereas knockdown leads to opposite alterations. Besides, USP7 deubiquitinates the X-linked inhibitor of apoptosis protein (XIAP). The USP7-induced increase in XIAP suppresses caspase 3 activity, leading to a reduction in tubulin cleavage and suppression of dendritic pruning. When USP7 is introduced into the brains of prenatal mice via in utero electroporation (IUE), it results in abnormal migration of newborn neurons and increased dendritic arborization. Importantly, intraventricular brain injection of AAV-USP7 in P0 mice leads to autistic-like phenotypes including aberrant social interactions, repetitive behaviors, as well as changes in somatosensory sensitivity. These findings provide new insights in USP7-related neurobiological functions and its implication in ASD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call