Abstract

We investigate the role of the Coulomb and the vector-isovector $\rho$ potentials in the asymmetry of the neutron and proton pseudospin splittings in nuclei. To this end, we solve the Dirac equation for the nucleons using central vector and scalar potentials with Woods-Saxon shape and $Z$ and $N-Z$ dependent Coulomb and $\rho$ potentials added to the vector potential. We study the effect of these potentials on the energy splittings of proton and neutron pseudospin partners along a Sn isotopic chain. We use an energy decomposition proposed in a previous work to assess the effect of a pseudospin-orbit potential on those splittings. We conclude that the effect of the Coulomb potential is quite small and the $\rho$ potential gives the main contribution to the observed isospin asymmetry of the pseudospin splittings. This isospin asymmetry results from a cancellation of the various energy terms and cannot be attributed only to the pseudospin-orbit term, confirming the dynamical character of this symmetry pointed out in previous works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.