Abstract
To analyze the effect of the C-H stretch mode excitation on the dynamics of the Cl + CHD3 gas-phase abstraction reaction, an exhaustive state-to-state dynamics study was performed. This reaction can evolve along two channels: H-abstraction, CD3 + ClH, and D-abstraction, CHD2 + ClD. On an analytical potential energy surface constructed previously by our group, named PES-2005, quasi-classical trajectory calculations were performed at a collision energy of 0.18 eV, including corrections to avoid zero-point energy leakage along the trajectories. First, strong coupling between different vibrational modes in the entry valley was observed; i.e., the reaction is vibrationally nonadiabatic. Second, for the ground-state CHD3(nu=0) reaction, the diatomic fragments appeared in their ground states, and the H- and D-abstraction reactions showed similar reactivities. However, when the reactivity per atom is considered, the H is three times more reactive than the D atom. Third, when the C-H stretch mode is excited by one quantum, CHD3(nu1=1), the H-abstraction is strongly favored, and the C-H stretch excitation is maintained in the product CHD2(nu1=1) + ClD channel; i.e., the reaction shows mode selectivity, reproducing the experimental evidence, and also the reactivity of the vibrational ground state is increased, in agreement with experiment. Fourth, the state-to-state angular distributions of the CD3 and CHD2 products showed the products to be practically sideways for the reactant ground state, while the C-H excitation yielded a more forward scattering, reproducing the experimental data. The role of the zero-point energy correction was also analyzed, and we find that the dynamics results are very sensitive on how the ZPE issue is treated. Finally, a comparison is made with the similar H + CHD3(nu1=0,1) and Cl + CH4(nu1=0,1) reactions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have