Abstract

The isothermal crystallization behavior and corresponding morphology evolution of poly(d-lactic acid) (PDLA) blends with PLLA6.7k or MPEG-b-PLLA6.7k-g-glucose with different architectures and different PLLA-grafted copolymer contents were investigated. The formation of stereocomplexes (SCs) in between the chain branched structure of MPEG-b-PLLA6.7k-g-glucose and PDLA chains acting as the physical crosslinking points slows down the motion of PDLA chains, but the SCs could act as a heterogeneous nucleating agent for the late formation of homocrystals (HCs) in the blend system, accelerating the crystallization kinetics of HCs through enhancing the nucleation density. For PDLA/MPEG-b-PLLA6.7k-g-glucose blends, the mobility of SCs in the blend system and the nucleation density of SCs in the blends exhibit oppositional behavior during the isothermal crystallization at a Tc of 130 °C. The evolution of the crystal growth and structure during the isothermal crystallization process by rheometry has revealed the interesting role of the branched chains of MPEG-b-PLLA6.7k-g-glucose in the mechanism of the crystallization in PDLA blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call