Abstract
The TRK-T3 oncoprotein, isolated from a human papillary thyroid tumor, arises from the fusion between the N-terminal domain of the TFG gene and the tyrosine kinase domain of the NTRK1 receptor. The 68 kDa TRK-T3 oncoprotein displays a constitutive tyrosine kinase activity resulting in its capability to transform NIH3T3 cells. The TFG portion of TRK-T3 contains a coiled-coil domain, which mediates protein oligomerization essential for the oncogene constitutive activation, and several consensus sites for protein interaction. In this study, we investigate the role of TFG sequences outside the coiled-coil domain on TRK-T3 activation, We constructed four mutants carrying different deletions of TFG sequences and expressed them in mammalian cells. By performing biochemical and biological assays we demonstrated that all the deleted regions are required for TRK-T3 activation, as they are involved in different mechanisms such as protein processing, formation of stable and/or functional complexes, and possible interaction with other proteins. By constructing site-specific mutants, we demonstrated a crucial role for a PB1 domain and a considerable contribution of an SH2-binding motif in TRK-T3 oncogenic activation. This work establishes an important role for TFG sequences outside the coiled-coil domain in the activation of the thyroid TRK-T3 oncogene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.