Abstract
In cold regions, the soil temperature gradient and depth of frost penetration can significantly affect roadway performance because of frost heave and thaw settlement of the subgrade soils. The severity of the damage depends on the soil index properties, temperature, and availability of water. While nominal expansion occurs with the phase change from pore water to ice, heaving is derived primarily from a continuous flow of water from the vadose zone to growing ice lenses. The temperature gradient within the soil influences water migration toward the freezing front, where ice nucleates, coalesces into lenses, and grows. This study evaluates the frost heave potential of frost-susceptible soils from Iowa (IA-PC) and North Carolina (NC-BO) under different temperature gradients. One-dimensional frost heave tests were conducted with a free water supply under three different temperature gradients of 0.26°C/cm, 0.52°C/cm, and 0.78°C/cm. Time-dependent measurements of frost penetration, water intake, and frost heave were carried out. Results of the study suggested that frost heave and water intake are functions of the temperature gradient within the soil. A lower temperature gradient of 0.26°C/cm leads to the maximum total heave of 18.28 mm (IA-PC) and 38.27 mm (NC-BO) for extended periods of freezing. The maximum frost penetration rate of 16.47 mm/hour was observed for a higher temperature gradient of 0.78°C/cm and soil with higher thermal diffusivity of 0.684 mm2/s. The results of this study can be used to validate numerical models and develop engineered solutions that prevent frost damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.