Abstract

In order to understand the role of superconductivity in superconducting transmission line resonator, we derive the mode equations using the macroscopic wavefunction of the Cooper pairs. We make an appropriate scaling to obtain the dimensionless form of equations and establish the validity of good conductor approximation under most circumstances. Quantization of superconducting transmission line resonator is realized by the black-box principle. We also briefly discuss that the deviation from good conductor behavior would result in the observable effects, such as the considerable decrease of phase velocity and the soliton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.