Abstract

We propose a scheme for generating squeezed states in solid state circuits which consist a superconducting transmission line resonator (STLR), a superconducting Cooper-pair box (CPB) and a nanoelectromechanical resonator (NMR). The nonlinear interaction between the STLR and the CPB can be implemented by setting the external biased flux of the CPB at some certain points. The interaction Hamiltonian between the STLR and the NMR is derived by performing Fröhlich transformation on the total Hamiltonian of the combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian, and the squeezed states of the STLR can be easily generated, which is similar to the three-wave mixing in quantum optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call