Abstract
Three suilysin (SLY) knockout mutant strains of Streptococcus suis serotype 2 were generated by allelic replacement from one North American and two European wild type strains. The mutants were characterized by Southern blot, Western blot and phenotyping. In vitro bactericidal testing showed that both wild type and SLY mutants were resistant to bactericidal factors in whole pig blood. To demonstrate the role of SLY during S. suis infection, four animal trials were carried out using young pigs. Either high dose (4×10 6 CFU/ml/pig) or low dose (0.5×10 6 CFU/ml/pig) live cell aerosol was applied to the pharynx. In one trial, a low challenge dose of North American strain SX332 and its isogenic sly − mutant strain (SX932) resulted in acute disease in 3/5 of pigs exposed to the wild type strain, while 5/5 of pigs exposed to the mutant strain survived the trial. In the repeat trial, 1/8 of pigs in wild type group and 6/8 of pigs in mutant group developed disease. The high dose trial with 332/932 pair showed that 4/8 pigs challenged with wild type and 5/8 of pigs challenged with mutant strain developed disease respectively. The third low dose trial, using European strain 31533 and its isogenic sly − mutant strain SX911, showed that 1/8 of pigs challenged with the wild type strain and 4/8 of pigs challenged with the corresponding mutant strain developed disease. All the diseased pigs showed fever, clinical signs and developed septicemia. S. suis was isolated from tissue samples such as brain, submandibular lymph node, lung, spleen, liver, heart or joint. Serum antibody titer against cell surface proteins changed little while the antibody titer against SLY increased only in the wild type group after challenge. sly gene was cloned and expressed in E. coli. The recombinant SLY (rSLY) protein showed 800 hemolysin units per μg protein. In vitro study showed that rSLY triggered TNFα production by human monocytes and IL-6 production by pig pulmonary alveolar macrophages and monocytes. Thus, the results of this study suggest that SLY does not seem to be a critical virulence factor for S. suis serotype 2 respiratory infection, but by stimulating cytokine release it may play a role in innate immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.