Abstract

Store-operated Ca2+ entry (SOCE) is an important Ca2+ influx pathway in non-excitable cells. STIM1, an ER Ca2+ sensor, and Orai1, a plasma membrane Ca2+ selective channel, are the two essential components of the Ca2+ release activated channel (CRAC) responsible for SOCE activity. Here we explored the role of STIM1 and Orai1 in neural differentiation of mouse embryonic stem (ES) cells. We found that STIM1 and Orai1 were expressed and functionally active in ES cells, and expressions of STIM1 and Orai1 were dynamically regulated during neural differentiation of mouse ES cells. STIM1 knockdown inhibited the differentiation of mouse ES cells into neural progenitors, neurons, and astrocytes. In addition, STIM1 knockdown caused severe cell death and markedly suppressed the proliferation of neural progenitors. Surprisingly, Orai1 knockdown had little effect on neural differentiation of mouse ES cells, but the neurons derived from Orai1 knockdown ES cells, like those from STIM1 knockdown cells, had defective SOCE. Taken together, our data indicate that STIM1 is involved in both early neural differentiation of ES cells and survival of early differentiated ES cells independent of Orai1-mediated SOCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.