Abstract

It was shown that the photolysis of 1,2,6-trimethyl-1,2-dihydroquinoline (126TMDHQ) in water, methanol, ethanol, and isopropanol affords the corresponding adducts of water and the alcohols, unlike the case of 2,2,4-trimethyl-1,2-dihydroquinolines bearing the methyl, alkoxyl, and hydroxyl substituents in the 1-, 6-, and 8-positions, which were previously found to form adducts only in the presence of water and MeOH. The quantum yield of the 126TMDQ photolysis (Φ) in this solvent series changes as ΦMeOH:ΦEtOH:ΦPrOH = 10:3:1. The results were rationalized in terms of the effect of steric hindrance caused by substituents on the heterocycle and increasing size of the alcohol alkyl group on proton transfer from the solvent to the 1,2-dihydroquinoline molecule in the excited singlet state. The existence of two adduct isomers was revealed. The preferential formation of one of the isomers was considered from the standpoint of carbocation accessibility to the solvent by nucleophilic attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.