Abstract
In chemical and hydrocarbon industry operational efficiency is improved by model-based solutions. Historical process data plays an important role in the identification and verification of models utilized by these tools. Since most of the used information are measured values, they are affected by errors influencing the quality of these models. Data reconciliaton aims the reduction of random errors to enhance the quality of data used for model development resulting in more reliable process simulators. This concept is applied to the development and validation of the complex process model and simulator of an industrial hydrogenation system. The results show the applicability of the proposed scheme in industrial environment.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have