Abstract

In this contribution we attempt to correlate the dynamical states of water molecules in reverse micelles with a solvolysis reaction in accordance with the activation energy barrier crossing model at the micellar interface. Precise measurement of the different dynamical states of water molecules at the reverse micellar interface with various degrees of hydration is achieved through temperature-dependent solvation dynamics of coumarin 523. The rotational anisotropy studies along with a wobbling-in-cone analysis show that the probe residing at the micellar interface pointing towards the core water experiences less microviscosity at elevated temperature. The consequences of the dynamical freedom of the water at elevated temperature in the solvolysis reaction of benzoyl chloride have also been explored. The accelerated rate of solvolysis has been correlated with the increased solvation dynamics, both of which are associated with a temperature-induced transition of bound to free type water molecules at the micellar interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call