Abstract

Given the ubiquity and abundance of the iron oxide minerals and their important roles in affecting the environmental fate of graphene oxide (GO) nanoparticles, the attachment of GO onto three iron oxide minerals (i.e., hematite, goethite, and ferrihydrite) under different solution chemistry conditions was investigated in this study. The main mechanism of the attachment of GO was electrostatic interaction. Calculations based on the DLVO theory showed that the attachment was a favorable process. Interestingly, the affinity of GO towards three iron oxide minerals was in the order of ferrihydrite > goethite > hematite. This result indicates that different characteristics of various iron oxides (e.g., specific surface area, crystal structure, and surface charge, and surface hydroxyl densities) can influence their attachment capacities for GO. The attachment of GO depended on the solution pH and ionic strength. Electrostatic attraction and hydrogen bonding were the important retention mechanisms for GO attachment when pH < pHPZC (the point of zero charge) and pH > pHPZC, respectively. The attachment capacities of iron oxides decreased with increasing ionic strength at lower pH because of the decrease of the electrostatic attraction. Meanwhile, the presence of divalent cations (i.e., Ca2+ and Cu2+) could significantly promote GO attachment mainly by the surface-bridging mechanism. Meanwhile, the enhancement effect of Cu2+ was greater than Ca2+ due to the greater complexation affinity of Cu2+. Furthermore, attachment isotherms showed that the presence of phosphate could inhibit the attachment of GO onto minerals obviously. Because phosphate could form inner-sphere surface complex on the iron oxide surface, and consequently decreased the electrostatic attraction between nanoparticles and minerals. Our study has important implications for predicting the fate of GO in natural environment where amounts of iron oxide minerals are present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.