Abstract

The aim of this study was to investigate the role of skeletal muscle fibre type in the regulation of glucose metabolism in middle-aged obese subjects with impaired glucose tolerance (IGT) during a 2-year exercise and dietary intervention. Muscle biopsies (musculus vastus lateralis) were taken from 22 subjects belonging to the intervention group of the Finnish Diabetes Prevention Study [1]. According to their myosin heavy chain (MHC) profile at the baseline, the subjects were divided into two groups: IGT(slow) (n=10) with a high proportion of MHC I isoforms and IGT(fast) (n=12) with a high proportion of MHC II isoforms in the vastus lateralis muscle. The intervention consisted of dietary counselling, strength and power training and/or aerobic exercise. The amount of exercise was the same in both groups; the exercise frequency was 5.1+/-2.7 h/week in the IGT(slow) and 5.1+/-2.8 h/week in the IGT(fast) group. Fasting glucose (p<0.05), 2-h glucose (p<0.05), fasting insulin (p<0.05), haemoglobin A1c (HbA(1c)) (p<0.01) and insulin resistance (p<0.05) [homeostasis model assessment for insulin resistance (HOMA-IR)] decreased in the IGT(fast) group, whereas only the 2-h glucose and HbA(1c) concentrations decreased in the IGT(slow) group. The amount of the glycogen synthase kinase-3-alphabeta (GSK-3-alphabeta) decreased in the IGT(fast) group (p<0.05). Exercise training increased the lactate dehydrogenase (LDH) (p<0.01), LDH-1 (p<0.05) and citrate synthase (CS) (p<0.05) activities in the vastus lateralis muscle in the IGT(slow) group, but only the CS activity (p<0.05) in the IGT(fast) group. The glucose metabolism improved both in the IGT(slow) and IGT(fast) group during the 2-year exercise and dietary intervention. The change was more prominent in the IGT(fast) group than in the IGT(slow) group, associated with the decrease of the GSK-alphabeta protein expression in skeletal muscle. The exercise training improved both glycolytic and oxidative capacity in the vastus lateralis muscle. The glycolytic capacity improved in the IGT(slow) group and the oxidative capacity in both groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.