Abstract

In the nervous system of the leech Hirudo medicinalis it has been possible to study short-term plastic changes. Depression and facilitation have been demonstrated in the fast conducting system (FCS) activity; this pathway consists of a chain of electrically linked neurons present in each ganglion. In semi-intact animals or in preparations of nerve cord and segments of body wall, both electrical stimulation of peripheral roots and tactile stimulation of the skin induced, after repetitive stimulation (0.1/s), a prolonged decrement of FCS response. Strong nociceptive stimulation applied onto the head or the body wall produced a sustained facilitation of the waned response. The same potentiation has been observed by perfusing the isolated ganglion with serotonin (5 × 10 −5 M). Such a potentiation is abolished by preincubation with methysergide, an antagonist of serotonin, and with imidazole, a cAMP-phosphodiesterase activator. Such an effect is mimicked by an analog of cAMP, db-cAMP. Simultaneous recordings of both T neurons (intracellularly) and FCS firing discharge showed that, during FCS response decrement, the T cell activity remained unchanged and no modification of conductance occurred, excluding therefore a detectable involvemnt of sensory neurons in the depression. These results suggest that short-term plastic changes of the FCS of the leech are due to a prolonged potentiation of synaptic transmission as a result of serotonin-mediated increase in cAMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.