Abstract

We report the fabrication of bottom-gate thin film transistors (TFTs) at various carrier concentrations of an amorphous InGaZnO (a-IGZO) active layer from ~1016 to ~1019cm−3, which exceeds the limit of the concentration range for a conventional active layer in a TFT. Using the Schottky TFTs configuration yielded high TFT performance with saturation mobility (μsat), threshold voltage (VTH), and on off current ratio (ION/IOFF) of 16.1cm2/Vs, −1.22V, and 1.3×108, respectively, at the highest carrier concentration active layer of 1019cm−3. Other carrier concentrations (<1019cm−3) of IGZO resulted in a decrease of its work function and increase in activation energy, which changes the source/drain (S/D) contact with the active layer behavior from Schottky to quasi Ohmic, resulting in achieving conventional TFT. Hence, we successfully manipulate the barrier height between the active layer and the S/D contact by changing the carrier concentration of the active layer. Since the performance of this Schottky type TFT yielded favorable results, it is feasible to explore other high carrier concentration ternary and quaternary materials as active layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call