Abstract

Two-dimensional transition metal dichalcogenides show a potential application in photoelectronic devices due to their excellent electronic and optical properties. These excellent properties benefit from large single crystals. Here, we demonstrate that large single crystal monolayer MoS2 can be synthesized on rough SiO2/Si substrate via chemical vapor deposition (CVD) method. Rough SiO2/Si substrate has two advantages. The first one is low nucleation density. The rough substrate with “hill and valley” structures can effectively suppress nucleation density. The lower nucleation density seems to be caused by the reduced surface concentrations of reactants, which has been verified by solving the diffusion equation. Another important advantage is the higher growth rate. We found that the free-standing MoS2 films were successfully grown over the “valley” regions of the rough surface. The calculated growth rate of free-standing MoS2 is three times as that on polished surface, which comes from the introduction of temperature gradient during suspended growth. Our findings have provided new insights into the mechanisms underlying CVD MoS2 growth on rough surfaces and are expected to accelerate the development of directly suspended growth of two-dimensional material for further device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.