Abstract
Two-dimensional transition metal dichalcogenides (TMDs) show a potential application in photoelectric device due to their excellent electrical and optical properties. Here, we report that the MoO3 pre-deposited chemical vapor deposition (CVD) is used to synthesize single crystal monolayer MoS2 triangles on 4in. wafer. We found that the wafer-scale uniformity of MoS2 can be greatly improved by regularly depositing MoO3 particles on substrate before CVD growth. Therefore, a piece of cleanroom wiper was used as a template for implementing precise control of MoO3 pre-deposition. We found that the optimal deposition size of MoO3 particles and the distance between MoO3 particles are about 15μm and 0.9mm, respectively. Both microscopic and spectroscopic characterization results demonstrate that the as-grown MoS2 is highly uniform in space distribution and crystal structure. The electronic performance of MoS2 synthesized by our method is comparable to or even slightly better than those in common CVD samples. The role of MoO3 pre-deposition is not only to effectively control the MoS2 nucleation density but also to overcome poor diffusion of MoO3 source. Our method is expected to accelerate the industrial synthesis of the atomically thin TMD materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.