Abstract

The Hudson Bay system is undergoing climate-driven changes in sea ice and freshwater inflow and has seen an increase in winter river inflow since the 1960s due in part to flow regulation for hydropower production. Southeast Hudson Bay and adjacent James Bay are at the forefront of these changes, with more than 1-month shortening of the season of sea ice cover as defined using satellite data, increases in winter inflow from the regulated La Grande River complex, and changes in coastal ice and polynya behavior described by Belcher Islands’ Inuit. In summer, there is a fresh coastal domain in southeast Hudson Bay fueled by river runoff and sea ice melt. To investigate winter oceanographic conditions and potential interactions between runoff and ice melt or brine in southeast Hudson Bay, we initiated the first winter study of the shallow waters surrounding the Belchers, collecting conductivity-temperature-depth (CTD) profiles and conductivity-temperature (CT) time series using under-ice moorings, and collecting water samples and ice cores during four campaigns between January 2014 and March 2015. Tandem measurements of salinity and δ18O were made for the water and ice samples to discriminate between freshwater sources (river runoff and sea ice melt). We find that southeast Hudson Bay, and particularly the nearshore domain southeast of the Belchers, is distinguished in winter by the presence of river water and strong surface stratification, which runs counter to expectations for a system in which local freshwater remains frozen on land until spring freshet (May–June) and sea ice growth is adding brine to surface waters. The amount of river water around the Belcher Islands increased significantly from fall through to late winter according to δ18O records of ice. The accumulation of river water in surface waters during the winter is directly associated with an accumulation of brine, which considerably exceeds the capacity of local ice formation to produce brine. We therefore infer that brine is advected into the study area together with river water, and that interplay between these properties establishes and maintains the level of surface stratification throughout winter. With reference to a NEMO ocean model simulation of winter circulation in the study area, we propose a conceptual model in which winter river inflow into James Bay drives the northward transport of both river water and brine captured near the surface, with reductions in brine-driven deep convection in the area’s flaw leads. While past changes in winter oceanographic conditions and sea ice cannot be reconstructed from the few available scientific data, the presence of significant runoff in winter in southeast Hudson Bay implies heightened sensitivity to delayed freeze-up under a warmer climate, which will have the effect of reducing brine early in the winter, also promoting increased stratification and river plume transport.

Highlights

  • The freshwater cycle in high-latitude seas is highly seasonal

  • Tandem measurements of salinity and δ18O were made for the water and ice samples to permit the discrimination between freshwater sources. These data are used here to (1) determine the freshwater content of the water column by source; (2) establish freshwater inventories for the water column in fall, 2014, early winter, 2015, and late winter, 2015; (3) describe spatial variations in freshwater distribution around the Belcher Islands from early to late winter; and (4) infer temporal changes in the surface waters during the study period using the results of the field campaigns and the composition of sea ice. Based on these results and the past work in this area, and with reference to a numerical ocean model (NEMO) ocean model simulation of winter circulation in the study area, we provide a conceptual model for how river water and sea ice together presently affect the winter oceanographic setting for waters that surround the Belcher Islands

  • Counter to what would be expected for a system in which greatest river inflows occur during spring freshet (May– June), the inventory of river water in the water column around the Belcher Islands increases from fall through to late winter

Read more

Summary

Introduction

Most of the river runoff, precipitation, and sea ice melt is added in spring and summer, while in winter, river runoff typically is low as the land remains frozen, and the formation of sea ice effectively withdraws freshwater from the surface ocean. This seasonal freshwater cycle exerts a first-order control on the oceanography of the Arctic’s seas (Carmack and Macdonald 2002; Carmack et al 2016). Freshwater remaining at the end of summer and/or addition of freshwater runoff during winter may counter-act the addition of brine from sea ice growth and maintain shallow stratification. The central role of freshwater seasonality at local, regional, and system-wide scales raises concern about the oceanographic consequences of shifting river inflow from summer to winter, as predicted for Arctic seas under a warmer climate, and through hydroelectric regulation, which, in some cases, stores water in spring and releases it in winter (Déry et al 2011; Prinsenberg 1991)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call