Abstract

Beginning at the summer solstice adult female mink were maintained in long- or short-day photoperiods and treated with bromocriptine or prolactin. In control females kept under natural lighting conditions the moult coincided with the seasonal decrease in prolactin and resulted in the growth of a dense winter coat which was completed by the end of November. Long days, which slowed the decrease in plasma prolactin relative to animals in the natural photoperiod, induced a more or less complete moult followed by growth of a thin summer coat. On the contrary we observed an accelerated decrease in plasma prolactin concentrations followed by an early and brief moult in females kept under long days but treated with bromocriptine and in females under short days. The growth of a dense winter coat was completed by the end of September in all the females of the short-day group and in six of eleven females treated with bromocriptine. In the other five females, moult was followed by the growth of a summer coat. These results may suggest that the decline of prolactin after the summer solstice is responsible for the onset of the autumn moult, but the early, abbreviated moult and the growth of a winter coat observed in females kept under short days and treated with prolactin do not seem to support this hypothesis. However, the huge non-physiological levels of prolactin measured in the plasma of these females and the appearance of abnormal white under-hairs might suggest that the hormonal balance in this group was completely disturbed by the treatment. The physiological role of prolactin in the seasonal moulting cycle in mink is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.