Abstract
The accurate design of labelled oligo probes for the detection of miRNA biomarkers by Surface Enhanced Raman Scattering (SERS) may improve the exploitation of the plasmonic enhancement. This work, thus, critically investigates the role of probe labelling configuration on the performance of SERS-based bioassays for miRNA quantitation. To this aim, highly efficient SERS substrates based on Ag-decorated porous silicon/PDMS membranes are functionalized according to bioassays relying on a one-step or two-step hybridization of the target miRNA with DNA probes. Then, the detection configuration is varied to evaluate the impact of different Raman reporters and their labelling position along the oligo sequence on bioassay sensitivity. At high miRNA concentration (100–10 nM), a significantly increased SERS intensity is detected when the reporters are located closer to the plasmonic surface compared to farther probe labelling positions. Counterintuitively, a levelling-off of the SERS intensity from the different configurations is recorded at low miRNA concentration. Such effect is attributed to the increased relative contribution of Raman hot-spots to the whole SERS signal, in line with the electric near field distribution simulated for a simplified model of the Ag nanostructures. However, the beneficial effect of reducing the reporter-to-surface distance is partially retained for a two-step hybridization assay thanks to the less sterically hindered environment in which the second hybridization occurs. The study thus demonstrates an improvement of the detection limit of the two-step assay by tuning the probe labelling position, but sheds at the same time light on the multiple factors affecting the sensitivity of SERS-based bioassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.