Abstract

Solvent-free carbonylation of glycerol with urea to glycerol carbonate (GC) was achieved over heterogeneous Cu–Zn mixed oxide catalyst. Cu–Zn catalysts with different ratios of Cu:Zn were prepared using co-precipitation (CP) and oxalate gel (OG) methods. As compared to CuO–ZnO(2:1) catalyst prepared by oxalate gel (OG) method, much higher conversion of glycerol and highest selectivity towards glycerol carbonate (GC) was achieved with CuO–ZnO_CP(2:1) catalyst. Physicochemical properties of prepared catalysts were investigated by using XRD, FT-IR, BET, TPD of CO2 and NH3 and TEM techniques. The effect of stoichiometric ratio of Cu/Zn, calcination temperature of CuO–ZnO catalysts and effect of reaction parameters such as molar ratio of substrates, time and temperature on glycerol conversion to GC were critically studied. Cu/Zn of 2:1 ratio, glycerol–urea 1:1 molar ratio, 145 ​°C reaction temperatures were found to be optimized reaction conditions to achieve highest glycerol conversion of 86% and complete selectivity towards GC. The continuous expel of NH3 from reaction the mixture avoided formation of ammonia complex with CuO–ZnO catalyst. As a result of this, CuO–ZnO catalyst could be recycled up to three times without losing its initial activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call