Abstract

Nanotwinned diamond (nt-diamond), which demonstrates unprecedented hardness and stability, is synthesized through the martensitic transformation of onion carbons at high pressure and high temperature (HPHT). Its hardness and stability increase with decreasing twin thickness at the nanoscale. However, the formation mechanism of nanotwinning substructures within diamond nanograins is not well established. Here, we characterize the nanotwins in nt-diamonds synthesized under different HPHT conditions. Our observation shows that the nanotwin thickness reaches a minimum at ~ 20 GPa, below which phase-transformation twins and deformation twins coexist. Then, we use the density-functional-based tight-binding method and kinetic dislocation theory to investigate the subsequent plastic deformation mechanism in these pre-existing phase-transformation diamond twins. Our results suggest that pressure-dependent conversion of the plastic deformation mechanism occurs at a critical synthetic pressure for nt-diamond, which explains the existence of the minimum twin thickness. Our findings provide guidance on optimizing the synthetic conditions for fabricating nt-diamond with higher hardness and stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call