Abstract
Takotsubo syndrome (TTS) is a stress-induced cardiomyopathy, but the accurate cause of this syndrome is still unknown. β-adrenergic agonist isoproterenol (ISO) is used to establish the TTS rats model. TTS rats were treated with or without LY294002 or Rapamycin. The rat cardiomyoblast cell line H9C2 was subjected to infect with constitutively active Akt (myr-Akt) or dominant-negative mutant Akt (dn-Akt) and then, treated with ISO. Cell apoptosis was assessed using the Bax/ Bcl-2 ratio. In addition, reactive oxygen species (ROS) levels were measured using dihydroethidium (DHE). Mitochondrial superoxide generation and membrane potential were assayed by MitoSOX and JC-1 fluorescence intensity. ISO might induce the erratic acute cardiac dysfunction and overexpression of PI3K/AKT/mTOR. Moreover, it also increased the oxidative stress and apoptosis in TTS rats. The Akt inhibitor significantly reversed the cardiac injury effect, which triggered by ISO treatment. In H9C2 cells, the inhibition of Akt provides a protective role against ISO-induced injury by reducing oxidative stress, apoptosis and mitochondrial dysfunction. This study provided new insight into the protective effects of myocardial dysfunction in TTS rats via chronic inhibition of the PI3K/AKT/mTOR expression, which could reduce mitochondrial ROS and oxidative stress-induced apoptosis. PI3K/AKT/mTOR inhibitor could be a therapeutic target to treat cardiovascular dysfunction induced by stress cardiomyopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.