Abstract

Relationships between physicochemical properties of hydroxypropyl methylcellulose (HPMC) compacts and their in vitro mucoadhesive performances were investigated in this study. Some commercial grades of HPMC (K3, E3, E5, E50, K4M, E4M and K15M) were prepared into compacts, and their surface hydrophilicity and hydration behavior were characterized. The in vitro mucoadhesive performance was determined by the tensile strength between the compacts and different regions of mucosal membrane (buccal, sublingual, stomach, and intestine). Positive correlations were found between: (1) viscosity of HPMC compacts and contact angle in different simulated body fluids; (2) viscosity of HPMC compacts and in vitro mucoadhesive force; (3) contact angle and in vitro mucoadhesive force. The hydration increased with an increase in viscosity of HPMC compacts. The polar lipid content in mucosa was found to be an important factor affecting the mucoadhesion. Lower polar lipid amount in the mucosal membrane promoted the rate of mucoadhesive force with the increasing viscosity of HPMC. The mucoadhesive mechanism of various grades of HPMC compacts were studied using the thermodynamic analysis of Lifschitz-van der Waals (LW) interaction and Lewis acid-base (AB) interactions. The total free energy of adhesion (ΔGTOT) provided a prediction of an overall tendency of mucoadhesion, and deviated from the measured mucoadhesive force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.