Abstract

Corticotropin-releasing factor (CRF) and the closely related family of neuropeptides urocortins (Ucns) are ancient paracrine-signaling peptides secreted in both the central and peripheral neural circuits. CRF and Ucns released from the CNS (central) regulate a plethora of physiological processes that include food intake, inflammation, and bowel motility and permeability. In the gastrointestinal tract, CRF actions are largely proinflammatory, whereas the effects of the Ucn subtypes can be either pro- or antiinflammatory. Central (intracerebroventricular) or peripheral (i.p.) administration of CRF or Ucns inhibits gastric emptying and promotes colonic motility. To ascertain the role of peripherally expressed CRF and UcnII in gastrointestinal inflammation and motility, we generated ileum-specific phenotypic knockouts of these peptides by using RNA interference. Long dsRNA effectively silenced basal expression of CRF and UcnII in ileum. Control dsRNA or saline treatment did not affect CRF or UcnII expression. In an experimental model of toxin-induced intestinal inflammation, inhibition of CRF ablated the inflammatory response (measured by epithelial damage, mucosal edema, and neutrophil infiltration). UcnII dsRNA treatment did not alter the inflammatory response to toxin. Furthermore, ileal motility was increased after site-specific inhibition of both CRF and UcnII. Thus, we demonstrate that ileal-specific CRF promotes inflammation and both CRF and UcnII modulate bowel motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.