Abstract

Operational stability, such as long-term ambient durability and bias stress stability, is one of the most significant parameters in organic thin-film transistors (OTFTs). The understanding of such stabilities has been mainly devoted to energy levels of frontier orbitals, thin-film morphologies, and device configuration involving gate dielectrics and electrodes, whereas the roles of molecular and aggregated structural features in device stability are seldom discussed. In this Letter, we report a remarkable enhancement of operational stability, especially bias stress, of n-channel single-crystal OTFTs derived from a replacement of phenyl with perfluorophenyl groups in the side chain. Because of the several-molecule-thick single-crystal nature employed for the OTFTs, the crystal-surface properties are thought to be critical, where the surface structure composed of perfluorophenyl moieties could suppress interactions between environmental species and field-induced carriers owing to increased hydrophobicity and steric protection of π-conjugated units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.