Abstract

The role of papillary muscle (PM) in the generation and maintenance of reentry is unclear. Computerized mapping (477 bipolar electrodes, 1.6-mm resolution) was performed in fibrillating right ventricles (RVs) of swine in vitro. During ventricular fibrillation (VF), reentrant wave fronts often transiently anchored to the PM. Tissue mass reduction was then performed in 10 RVs until VF converted to ventricular tachycardia (VT). In an additional 6 RVs, procainamide infusion converted VF to VT. Maps showed that 77% (34 of 44) of all VT episodes were associated with a single reentrant wave front anchored to the PM. Purkinje fiber potentials preceded the local myocardial activation, and these potentials were recorded mostly around the PM. When PM was trimmed to the level of endocardium (n = 4), sustained VT was no longer inducible. Transmembrane potential recordings (n = 5) at the PM revealed full action potential during pacing, without evidence of ischemia. Computer simulation studies confirmed the role of PM as a spiral wave anchoring site that stabilized wave conduction. We conclude that PM is important in the generation and maintenance of reentry during VT and VF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.