Abstract

Aluminum oxide (c-Al2O3) films are deposited for various (0.5, 1, 1.5 and 2 mbar) oxygen pressures on glass substrates by thermal evaporator. The x-ray diffraction patterns exhibit the development of single diffraction peak related to c-Al2O3 phase which grows along (2 2 0) orientation up to 1.5 mbar pressure. For 2 mbar pressure, the deposited film becomes amorphous because no diffraction peak is observed. A minimum FWHM and maximum crystallite size of c-Al2O3 (2 2 0) plane is observed for 1 mbar pressure. The enhanced crystallite size of c-Al2O3 (2 2 0) plane is responsible to decrease the dislocation density and residual stresses developed during the deposition process. The field emission scanning electron microscopic analysis reveals the formation of smooth, uniform and compact films showing uniform distribution of nano-particles of different shapes and sizes. The energy dispersive x-ray spectroscopic analysis confirms the presence of Al whose content is decreased with the increase of oxygen pressures. The ellipsometric analysis confirms that the refractive index and the thickness of c-Al2O3 film deposited for 0.5 mbar pressure are found to 1.685 and 124.43 nm respectively. In short, the crystal structure, surface morphology, film thickness and refractive index of c-Al2O3 films are associated with the increase of oxygen pressures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call