Abstract
Engagement of Fc gamma receptors (Fc gamma Rs) with the Fc region of IgG elicits immune responses by leukocytes. The recent crystal structure of Fc gamma RIII in complex with IgG-Fc has provided details of molecular interactions between these components (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). One of the most intriguing issues is that glycosylation of IgG-Fc is essential for the recognition by Fc gamma Rs although the carbohydrate moieties are on the periphery of the Fc gamma RIII-Fc interface. To better understand the role of Fc glycosylation in Fc gamma R binding we prepared homogeneous glycoforms of IgG-Fc (Cri) and investigated the interactions with a soluble form of Fc gamma RIIb (sFc gamma RIIb). A 1:1 complex stoichiometry was observed in solution at 30 degrees C (K(d), 0.94 microm; Delta G, -8.4 kcal mol(-1); Delta H, -6.5 kcal mol(-1); T Delta S, 1.9 kcal mol(-1); Delta C(p), -160 cal mol(-1) K(-1)). Removal of terminal galactose residues did not alter the thermodynamic parameters significantly. Outer-arm GlcNAc residues contributed significantly to thermal stability of the C(H)2 domains but only slightly to sFc gamma RIIb binding. Truncation of 1,3- and 1,6-arm mannose residues generates a linear trisaccharide core structure and resulted in a significantly decreased affinity, a less exothermic Delta H, and a more negative Delta C(p) for sFc gamma RIIb binding, which may result from a conformational change coupled to complex formation. Deglycosylation of the C(H)2 domains abrogated sFc gamma RIIb binding and resulted in the lowest thermal stability accompanied with noncooperative unfolding. These results suggest that truncation of the oligosaccharides of IgG-Fc causes disorder and a closed disposition of the two C(H)2 domains, impairing sFc gamma RIIb binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.